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Abstract
We formulate a general multi-mode Gaussian operator basis for fermions,
to enable a positive phase-space representation of correlated Fermi states.
The Gaussian basis extends existing bosonic phase-space methods to Fermi
systems and thus allows first-principles dynamical or equilibrium calculations
in quantum many-body Fermi systems. We prove the completeness of the basis
and derive differential forms for products with one- and two-body operators.
Because the basis satisfies fermionic superselection rules, the resulting phase
space involves only c-numbers, without requiring anticommuting Grassmann
variables. Furthermore, because of the overcompleteness of the basis, the
phase-space distribution can always be chosen positive. This has important
consequences for the sign problem in fermion physics.

PACS numbers: 03.65.Ca, 42.50.Lc, 03.75.Ss, 71.10.Fd

1. Introduction

In this paper, we address the issue of how to represent highly correlated fermionic states,
for the purposes of efficient calculations in fermionic many-body physics. To this end, we
introduce a normally ordered Gaussian operator basis for fermionic density operators, in order
to extend earlier phase-space techniques used to represent atomic transitions [1, 2]. The
analogous phase-space representations for bosons were first introduced over a classical phase
space [3–6], which were subsequently extended to a non-classical phase space [7, 8] and then
to a complete Gaussian basis [9].

We show that, just as with bosons, the Gaussian basis enables a representation of arbitrary
fermionic density operators as a positive distribution over a generalized phase space. We
investigate both a number-conserving basis set, which includes the usual thermal states used
to describe Fermi gases, and a non-number-conserving basis set, which also includes the
Bardeen–Cooper–Schreiffer (BCS) states found in superconductivity theory [10]. The latter
comprises the most general Gaussian basis. This approach has the advantage that the phase-
space variables correspond to covariances or Green’s functions, described by coordinate pairs.
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Unlike many previous antisymmetric wavefunction or path-integral approaches, distributions
over the covariances can be chosen as probabilities, which therefore allow the use of random
sampling without the usual fermionic sign problem.

In this paper, we concentrate on the foundational issues of the Gaussian representation
method, proving three central results:

• Gaussian operators form a complete basis for any physical density matrix,
• the resulting distribution can always be chosen positive,
• all two-body operators map to a second-order differential form.

From these results, it follows that positive-definite Fokker–Planck equations [11] exist
for many-body fermionic systems. Such Fokker–Planck equations enable first-principles
stochastic numerical simulation methods, either in real time or at finite temperature. These have
already been applied to the important and fundamental case of the finite temperature Hubbard
model [12, 13], which has well-known sign problems when treated using path integrals. In
this case, the Gaussian method does not suffer from the usual sign problems, because the
distributions and weights can always be chosen to be positive. Stochastic equations can also
be used to obtain novel types of perturbation theory using stochastic diagram techniques
[14]. The detailed formulation of the resultant phase-space simulation methods will be given
elsewhere [15].

This approach has some similarities to auxiliary field methods [16] used to treat
fermionic path integrals. However, such path integrals are not generally guaranteed to
correspond to probabilities. The advantage of the present approach is that it is applied
to directly expand the fermionic density operators. This, in turn, allows a greater
physical understanding and fewer restrictions in the resulting applications. Because phase-
space methods embody a different approach to quantum mechanics than path integrals, a
number of important theorems and identities need to be established. These new results,
pertaining to completeness, positivity and differential identities, are given in the present
paper.

To begin with, we establish in section 2 the definition of a Gaussian operator in
unnormalized form. We follow this in section 3 with elementary examples of one- and two-
mode Gaussians in order to illustrate the basic structure and the physics underlying it. The
two-mode examples include the density operators for thermal and squeezed/BCS fermionic
states. The squeezed fermionic states correspond physically to systems with broken symmetry
in condensed matter. In section 4, we introduce some notation that is convenient for discussing
general Gaussian operators in a multi-mode system.

The main part of the paper (section 5) introduces the most general class of multi-mode
normalized Gaussian operators and discusses those of its properties that are relevant to its use
as an operator basis set. This section gives the proofs of completeness and positivity properties,
by means of expansions in number-state projectors. Depending on the phase properties of the
density matrix, expansions may require either phase-insensitive (normal) Green’s functions
or phase-sensitive (anomalous) Green’s functions. We also derive a number of differential
identities, which are proved in appendix B by use of Fermi coherent states [17] (appendix A).
These are relevant to the derivation of Fokker–Planck and stochastic equations, which are
explained in detail in [15].

2. Definitions

To define Gaussian operators for a given fermionic system, we first decompose it into a set
of M orthogonal single-particle modes or orbitals. With each of these modes, we associate
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creation and annihilation operators b̂
†
j and b̂j , with anticommutation relations[̂

bj , b̂
†
k

]
+ = δjk, [̂bj , b̂k]+ = 0, (2.1)

where j, k = 1, . . . ,M . Thus, b̂ is a column vector of the M annihilation operators and b̂
†

is
a row vector of the corresponding creation operators.

We define a Gaussian operator to be a normally ordered, Gaussian form of annihilation and
creation operators. Like a complex-number Gaussian, the operator Gaussian is an exponential
of a quadratic form, with the exponential defined by its series representation. We follow
the standard convention that fermionic normal ordering includes a sign change for every
operator exchange, so that :̂bkb̂

†
j : = −b̂

†
j b̂k . Normal ordering is utilized here because it

allows us to most directly use Fermi coherent-state methods [17, 18] involving Grassmann
algebra [19, 20], which are described in greater detail in the appendices. We note that from
particle–hole symmetry, it is also possible to obtain an entirely analogous antinormally ordered
representation, which simply exchanges the roles of particles and holes in the formalism.

The most general Gaussian form is a cumbersome object to manipulate, unless products
of odd numbers of operators are excluded. Fortunately, restricting the set of Gaussians to
those containing only even products can be physically justified on the basis of superselection
rules for fermions. Because it is constructed from pairs of operators, this type of Gaussian
operator contains no Grassmann variables, in contrast to the Fermi representations in [18] and
[21].

In order to relate these quadratic expressions to the usual Dirac state-vector notation in
the examples that follow, we define number states as

|�n〉 = |n1〉 ⊗ |n2〉 · · · ⊗ |nM〉
= ( b̂†

1

)n1
(
b̂
†
2

)n2 · · · ( b̂†
M

)nM |0〉M, (2.2)

where �n = (n1, n2, . . . , nM) is a vector of integer occupations and where |0〉M is the M-mode
fermion vacuum state.

We also recall some elementary identities which relate quadratic forms in fermion
operators to state projection operators. For individual operators, one has the well-known
identities:

b̂j = |0〉j 〈1|j , b̂
†
j = |1〉j 〈0|j . (2.3)

Hence, the elementary identities for quadratic products are as follows, for i < j ,

b̂
†
i b̂i = |1〉i〈1|i

∏
k �=i

1̂k

b̂i b̂
†
i = |0〉i〈0|i

∏
k �=i

1̂k

b̂
†
i b̂j = |1i , 0j 〉〈0i , 1j |

∏
k �=i,j

1̂k

b̂j b̂i = |0i , 0j 〉〈1i , 1j |
∏
k �=i,j

1̂k,

(2.4)

where 1̂k is the identity operator for the kth mode.
Expanding quantum states in terms of an underlying basis set is a widespread procedure

in quantum mechanics. However, using the general Gaussian operators in this capacity is
nonstandard in several respects. First, one is expanding a quantum density operator over
a basis set that includes mixed as well as pure quantum states. (By ‘quantum state’, we
mean density operators rather than state vectors, even for pure states.) Second, the Gaussian
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operator basis states are not orthogonal. Third, we also allow the basis set to include operators
which are not themselves density operators. These additional degrees of freedom prove useful
in obtaining the requisite completeness properties. We now give the mathematical form of
these basis operators, in unnormalized form. Normalized forms �̂M will be introduced in
section 5.

2.1. Number-conserving Gaussians

We first consider the special case obtained when the quadratic is of form b̂
†
i b̂j , so that it is

number conserving. The most general, number-conserving Gaussian operator can be written
as

�̂
(u)
M (µ) = : exp[−b̂

†
µ̂b] :,

= :
M∏

i,j=1

exp
[−b̂

†
i µij b̂j

]
:

= :
M∏

i,j=1

[
1̂ − b̂

†
i µij b̂j

]
: (2.5)

where µ is a complex M×M matrix. The last result follows because normally ordered products
in which the same operator appears more than once are zero, from the anticommutation
relations in equation (2.1). For the special case that µ is a Hermitian matrix, the Gaussian
operator is just the density operator of a thermal state. If all the eigenvalues of µ are also either
0 or 1, then the Gaussian corresponds to a Slater determinant (i.e., a product of single-mode
number states).

It should be noted here that we do not restrict the Gaussian operators of this type to be
just thermal states. In general, we would wish to consider density matrices that are linear
combinations of Gaussian operators. These can exist as Hermitian, positive-definite operators
even when composed of Gaussians that have neither property.

2.2. Non-number-conserving Gaussians

If anomalous products of form b̂i b̂j are included as well, then the most general non-number-
conserving Gaussian is a type of squeezed state:

�̂
(u)
M (µ, ξ, ξ+) = : exp

[
−b̂

†
µ̂b − 1

2
( b̂ξ+̂b + b̂

†
ξ̂b

†
)

]
:

=
∏
i>j

[
1 − ξij b̂

†
i b̂

†
j

]
:
∏
ij

[
1 − µij b̂

†
i b̂j

]
:
∏
i>j

exp
[
1 − ξ+

ij b̂i b̂j

]
. (2.6)

Here, ξ, ξ+ are complex antisymmetric M × M matrices. For the special case that µ is a
Hermitian matrix and ξ† = ξ+, then the Gaussian operator is just the density operator for a
squeezed thermal state.

As before, we do not restrict the Gaussian operators to be just the squeezed thermal
states, even though these represent a large and physically important class of fermionic density
operators. By extending the definition to include all exponentials of quadratic forms, we can
obtain a more useful set, which is a complete basis with a positive-definite representation for
all density operators, as we show in section 5.
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3. One- and two-mode Gaussian operators

In this section, we give examples of Gaussian operators in elementary one- and two-mode
cases. These are sufficient to illustrate the basic identities and ideas. More general results will
be given in section 5.

3.1. Single-mode Gaussian operators

An unnormalized Gaussian operator for a single mode has only one possible form:

�̂
(u)
1 (µ) = : exp[−µ̂b† b̂] :

≡ :
∞∑

k=0

1

k!
(−µ̂b† b̂)k :, (3.1)

where the exponential is defined, as indicated, by its series representation. Just as in the
general case of equation (2.5), the anticommutivity of the fermionic operators means that
only the zeroth- and first-order terms in the expansion contribute to the single-mode Gaussian,
giving the simple result

�̂
(u)
1 (µ) = 1 − µ̂b† b̂. (3.2)

The normalization of this Gaussian operator is

N1 ≡ Tr �̂1

= 2 − µ. (3.3)

Excluding the point µ = 2, we define new parameters n = (1 − µ)/(2 − µ) and ñ = 1 − n,
which allow us to write the Gaussian in normalized form as

�̂1(n) = ñ : exp[−(2 − 1/ñ)̂b† b̂] :

= ñ̂b̂b† + n̂b† b̂

= ñ|0〉〈0| + n|1〉〈1|. (3.4)

If n is real, then equation (3.4) shows directly that �̂1(n) is the density operator corresponding
to a mixture of number states in the one-mode case. The expectation value of the particle
number n̂ ≡ b̂† b̂ is just the variable n. Conversely, ñ gives the number of holes.

3.1.1. Completeness and positivity. As two special cases, we obtain the number states

|0〉〈0| = �̂1(0), |1〉〈1| = �̂1(1), (3.5)

which implies that just these two single-mode Gaussians form a complete basis set
for a number-conserving subset of Hilbert space. Because superselection rules prohibit
superpositions of states differing by odd numbers of fermions, this is the most general case
possible. Furthermore, we see from equation (3.5) that the most general single-mode density
matrix can be expanded as a mixture of Gaussians with positive coefficients, since 0 � n � 1:

ρ̂ = ñ�̂1(0) + n�̂1(1). (3.6)

Additionally in the one-mode case, all physical density operators are also Gaussian operators
ρ̂ = �̂1(n), which is another proof of positivity and completeness.

It is clear from these examples that the Gaussian operators are overcomplete: a physical
density matrix may be represented by more than one positive distribution over the Gaussians.
The most general single-mode Gaussian operator, with n complex, provides an even larger
overcomplete basis for physical density matrices, even though such Gaussians are not always
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physical density matrices themselves. For example, any uniform-phase distribution over
Gaussian states gives the zero-particle state:

|0〉〈0| =
∫

dφ �̂1(r eiφ). (3.7)

From the usual hole–particle symmetry of fermion states, the single-particle state is similarly
obtained from

|1〉〈1| =
∫

dφ �̂1(1 − r eiφ). (3.8)

3.2. Two-mode number-conserving Gaussian operators

A straightforward extension of the generalized thermal Gaussian form to two modes gives

�̂
(u)
2 (µ) = : exp

−
2∑

i,j=1

µij b̂
†
i b̂j

 :

= 1 −
2∑

i,j=1

µij b̂
†
i b̂j + det[µ]̂b†

1 b̂
†
2 b̂2̂b1, (3.9)

where the µij are the elements of the 2 × 2 matrix µ. The last step follows by explicitly
expanding the general result in equation (2.5), while taking account of the sign changes during
normal ordering. Again, the series expansion contains all possible normally ordered nonzero
products of the b̂

†
i b̂j pairs. In terms of two-mode number-state projectors, the Gaussian

operator is

�̂
(u)
2 (µ) = |00〉〈00| + (1 − µ11)|10〉〈10| + (1 − µ22)|01〉〈01|

+ (1 − µ11 − µ22 + det[µ])|11〉〈11| − µ12|10〉〈01| − µ21|01〉〈10|. (3.10)

3.2.1. Normalization and correlations. Following from equation (3.10), the normalization
is

N2 = 4 − 2µ11 − 2µ22 + det[µ]. (3.11)

Defining the matrices ñ = (2I − µT )−1 and n = I − ñ, where I is the 2 × 2 identity matrix,
we can write the normalized two-mode Gaussian as

�̂2(n) = det[̃n] : exp[−b̂
†
(2I − ñ−T )̂b] :

= det[̃n]|00〉〈00| + (n11ñ22 + n12n21)|10〉〈10| + (n22ñ11 + n12n21)|01〉〈01|
+ det[n]|11〉〈11| + n21|10〉〈01| + n12|01〉〈10|. (3.12)

If n is a Hermitian matrix, then the two-mode Gaussian corresponds to the density matrix
of a mixture of states of different total number, with coherences n12 = n∗

21 between states of
the same total number.

Normally ordered first-order correlations of the Gaussian operators correspond to elements
of n: 〈

b̂
†
i b̂j

〉
�̂

≡ Tr
[
b̂
†
i b̂j �̂2

] = nij , (3.13)

and higher order correlations reduce to products of first-order averages, for example,〈
b̂
†
1 b̂1̂b

†
2 b̂2
〉
�̂

= n11n22 − n12n21. (3.14)
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This kind of factorisation of higher order correlations could be taken as the defining
characteristic of a Gaussian state, and more generally, Gaussian operators, rather than the
more formal operator definition given by equation (3.9). In other words, Gaussian operators
have both a Gaussian form and generate Gaussian statistics.

We emphasize here that the correlations defined in equation (3.13) are only physical
correlations when �̂ is a physical density matrix, since the Gaussian operators can also have
unphysical correlations when nij is not Hermitian.

Because the matrix n is Hermitian for the special case of a Gaussian that is a density
operator, it can be diagonalized in these cases, corresponding to a change of single-particle
basis. In this diagonalized basis, since the coherences are zero, the density operator is a mixture
of number states, totally characterized by average occupation numbers. In other words, these
Gaussian operators correspond to two-mode thermal states.

3.2.2. Completeness. We wish to show first that any number-conserving two-mode density
matrix can be expanded in terms of Gaussian operators and second that this can be done with
positive expansion coefficients. The first result follows if we can represent all the number-state
projectors between states of the same total number using Gaussian operators. By inspection
of equation (3.12) above, we find that

|00〉〈00| = �̂2(0)

|10〉〈10| = �̂2

([
1 0
0 0

])
|01〉〈01| = �̂2

([
0 0
0 1

])
|11〉〈11| = �̂2(I)

n21|10〉〈01| = �̂2

([
n1 0
n21 n2

])
− �̂2

([
n1 0
0 n2

])
n12|01〉〈10| = �̂2

([
n1 n12

0 n2

])
− �̂2

([
n1 0
0 n2

])
.

(3.15)

Thus, the two-mode Gaussians form a complete operator basis for all number-conserving
density matrices.

3.2.3. Positivity. Not only is the two-mode Gaussian a complete representation, but it is
also a positive one: any two-mode number-conserving density operator can be written as a
positive distribution over Gaussian operators. To see this, note that while the expression for the
projection operators, equation (3.15), includes terms with negative coefficients, the projectors
involved are the off-diagonal ones. Since density matrices are positive definite, off-diagonal
projectors can only occur in combination with diagonal projectors. We take this into account
in what follows.

Any two-mode density operator can be expanded into number-state projector operators
as follows:

ρ̂ =
∑

�n

∑
�n′

ρ�n,�n′ |�n〉〈�n′|, (3.16)

where �n and �n′ are vectors of integer occupation numbers: �n = (n1, n2), �n′ = (n′
1, n

′
2). Here,

ρ�n,�n′ = 0 if
∑

j nj �= ∑
j n′

j , because of total-number conservation. Using the relations in
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equation (3.15), we can write the density operator as

ρ̂ =
∑

�n

1

2
ρ�n,�n

[
�̂2

([
n1 2ρ(01),(10)

0 n2

])
+ �̂2

([
n1 0

2ρ(10),(01) n2

])]
. (3.17)

Since the diagonal coefficients ρ�n,�n are positive and sum to 1, the Gaussian operators form the
basis of a probabilistic representation of any two-mode density operator.

While any two-mode number-conserving density matrix can be expanded in the form in
equation (3.17), there are often more direct representations. For example, as equation (3.20)
shows, the entangled state |φ〉 = α|10〉 + β|01〉 can be represented by just one term, rather
than the four terms that result from equation (3.17).

3.2.4. Correlation and entanglement. We first note that any uncorrelated product of number-
state mixtures can be represented exactly

ρ̂n1 ⊗ ρ̂n2 ≡ {̃n1|0〉〈0| + n1|1〉〈1|} ⊗ {̃n2|0〉〈0| + n2|1〉〈1|}
= �̂2

([
n1 0
0 n2

])
. (3.18)

As well as these uncorrelated mixtures, the Gaussian basis can also be used to represent a
mixture with correlations between the modes, this time as a sum (with positive weights) of
two terms:

A|00〉〈00| + B|11〉〈11| = A�̂2(0) + B�̂2(I). (3.19)

Importantly, superpositions of number states, corresponding to entangled states, can
also be represented, subject to total-number conservation. For example, the density matrix
corresponding to the state |φ〉 = α|10〉 + β|01〉 is

|φ〉〈φ| = |α|2|10〉〈10| + αβ∗|10〉〈01| + α∗β|01〉〈10| + |β|2|01〉〈01|
= �̂2

([|α|2 α∗β
αβ∗ |β|2

])
. (3.20)

Thus, the number-conserving Gaussian operators even include entangled density matrices,
making them a powerful tool for representing highly correlated states.

This property of being able to represent such Bell-like entangled states with the Hermitian
subset of Gaussian operators is different to the case of Gaussian expansions for bosons. A
typical example of this type of non-classical representation is the positive-P representation
[7, 8], which must use a non-Hermitian basis to obtain a positive distribution that can represent
all two-mode density matrices, such as those that violate a Bell inequality [22].

3.3. Two-mode squeezed Gaussian operators

Equation (3.9) does not represent the most general two-mode Gaussian form, as the quadratic
form does not yet include terms such as b̂1̂b2. Incorporating such anomalous products, we can
write the most general Gaussian operator in normalized form as

�̂
(u)
2 (µ, ξ, ξ+) = : exp

−
2∑

i,j=1

µij b̂
†
i b̂j − ξ +̂b1̂b2 − ξ b̂

†
2 b̂

†
1

 :

= 1 −
2∑

i,j=1

µij b̂
†
i b̂j − ξ b̂

†
2 b̂

†
1 − ξ +̂b1̂b2 + (det[µ] + ξξ+)̂b

†
1 b̂

†
2 b̂2̂b1, (3.21)
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where ξ and ξ+ are independent complex numbers. The two additional operator terms in the
expansion, b̂

†
2 b̂

†
1 and b̂1̂b2, are projectors between states of different total number:

b̂1̂b2 = −|00〉〈11|, b̂
†
2 b̂

†
1 = −|11〉〈00|, (3.22)

which are the kinds of coherences that appear in the density matrices of two-mode squeezed
states.

3.3.1. Normalization and correlations. The normalization of the squeezed Gaussian is

N2 = 4 − 2µ11 − 2µ22 + det[µ] + ξξ+. (3.23)

To incorporate this into a normalized Gaussian, we redefine n and ñ such that

ñ = N2

N2 − ξξ+
(2I − µT )−1, (3.24)

and introduce rescaled squeezing parameters m = −ξ/N2, m+ = −ξ+/N2. The normalized
form is then

�̂2(n,m,m+) = (det[̃n] + mm+) : exp

[
( b̂

†
b̂

T
)(I − σ−1/2)

(
b̂

b̂
†T

)]
:, (3.25)

where the 4 × 4 matrices I and σ are defined to be

I =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , σ =


−ñ11 −ñ21 0 m

−ñ12 −ñ22 −m 0
0 −m+ ñ11 ñ12

m+ 0 ñ21 ñ22

 . (3.26)

In terms of number-state projectors, the normalized Gaussian is a generalisation of the
number-conserving case, but with the additional non-number-conserving projectors:

�̂2(σ ) = (det[̃n] + mm+)|00〉〈00| + (n11ñ22 + n12n21 − mm+)|10〉〈10|
+ (n22ñ11 + n12n21 − mm+)|01〉〈01| + (det[n] + mm+)|11〉〈11|
+ n21|10〉〈01| + n12|01〉〈10| − m|11〉〈00| − m+|00〉〈11|. (3.27)

In addition to the normal correlations of equation (3.13), the squeezed Gaussians can also
have nonzero anomalous correlations, which are just equal to the new variables m and m+:

〈 b̂1̂b2〉�̂ = m,
〈
b̂
†
2 b̂

†
1

〉
�̂

= m+. (3.28)

These correlations imply that for �̂2(n,m,m+) to be a density matrix, m and m+ must be
complex conjugate. The second-order correlation generalizes to〈

b̂
†
1 b̂1̂b

†
2 b̂2
〉
�̂

= n11n22 − n12n21 + mm+, (3.29)

which again corresponds to the decorrelation that occurs in a state with Gaussian statistics.

3.3.2. Completeness. From equation (3.27), it follows that the squeezed Gaussians provide
a complete two-mode fermionic basis, not only for the number-conserving subspace, but also
for all states containing superpositions of states whose difference in total number is even.
To see this, note that the projectors between the |00〉 and |11〉 number states can be written
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explicitly in terms of the Gaussian operators as

m|11〉〈00| = �̂2(n,−m, 0) − �̂2(n, 0, 0),

m+|00〉〈11| = �̂2(n, 0,−m+) − �̂2(n, 0, 0),
(3.30)

for any n. These projectors, together with those of equation (3.15), span the complete Hilbert
space of density matrices in question.

3.3.3. Positivity. Just as for the number-conserving case, we can write any physical density
operator as a positive distribution over Gaussian operators:

ρ̂ =
∑

�n

∑
�n′

ρ�n,�n′ |�n〉〈�n′|

=
∑

�n

1

2
ρ�n,�n

[
�̂2

((
n1 2ρ(01),(10)

0 n2

)
,−2ρ(11,00), 0

)

+ �̂2

([
n1 0

2ρ(10),(01) n2

]
, 0,−2ρ(00,11)

)]
. (3.31)

Thus, the Gaussians form the basis of a probabilistic representation of any physical two-mode
density operator. The ability to represent physical density matrices with the Gaussian basis,
either as a single element or by a positive distribution over basis elements, is important for
calculating dynamical simulations of quantum systems via probabilistic methods.

3.3.4. Entanglement. Again, these types of Gaussians can directly correspond to entangled
density matrices, without having to consider expansions over several elements. But now
superpositions of different total number can be represented. As an example of these additional
kinds of physical states that the squeezed Gaussians can represent, consider the entangled
non-number-conserving superposition state: |ψ〉 = [|00〉+ |11〉]/√2. This can be represented
by a single Gaussian:

|ψ〉〈ψ | = 1
2 [|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|]

= �̂2
(

1
2 I,− 1

2 ,− 1
2

)
. (3.32)

Hence, the more general type of Gaussian basis element considered here is considerably more
powerful for representing entangled and correlated states than the number-conserving basis
set.

4. Multi-mode decomposition of Fermi systems

So far we have considered only one- and two-mode systems, to illustrate the basic physical
properties of Gaussian operators. As we saw, the Gaussian operators could easily be written
in terms of number-state projectors. The power of the Gaussian operators as a basis in its own
right becomes apparent for multi-mode systems, for which the number-state basis eventually
becomes unusable due to exponential complexity: the Hilbert space dimension scales as 2M

for an M-mode Fermi system.
Before defining the general Gaussian basis for a system with many degrees of freedom, we

define some mathematical notation and conventions that will be of subsequent use. Because
we will always consider the general M-code case from here on, we will write �̂ without the
subscript M, for notational simplicity. As before, we define b̂ as a column vector of the M

annihilation operators and b̂
†

as a row vector of the corresponding creation operators. We also
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introduce an extended column vector of all 2M operators: b̂ = ( b̂
T
, b̂

†
)T , with an adjoint row

vector defined as b̂
† = ( b̂

†
, b̂

T
). Writing out these in full, we get

b̂ =



b̂1

...

b̂M

b̂
†
1
...

b̂
†
M


, b̂

† = ( b̂†
1, . . . , b̂

†
M, b̂1, . . . , b̂M

)
. (4.1)

Throughout the paper, we print length-M vectors and M ×M matrices in bold type, and index
them where necessary with Latin indices: j = 1, . . . , M . Length-2M vectors we denote with
an underline and 2M × 2M matrices we denote with a double underline. These extended
vectors and matrices are indexed where necessary with Greek indices: µ = 1, . . . , 2M . Note
that an object such as b̂ b̂

†
is a 2M × 2M matrix:

b̂ b̂
† =

[
b̂̂b† b̂̂bT

b̂†T b̂† b̂†T b̂T

]
, (4.2)

whereas b̂
†̂
b = ∑k b̂

†
kb̂k + b̂kb̂

†
k (=M) is a scalar. More general kinds of vectors are denoted

with an arrow notation: −→µ .
For products of operators, we make use of normal and antinormal ordering concepts.

Normal ordering, denoted by : · · · :, is defined as in the bosonic case, with all annihilation
operators to the right of the creation operators, except that each pairwise reordering involved
induces a sign change, e.g., :̂bi b̂

†
j : = −b̂

†
j b̂i . The sign changes are necessary so that the

anticommuting natures of the Fermi operators can be accommodated without ambiguity.
We define antinormal ordering similarly and denote it via curly braces:

{̂
b
†
j b̂i

} = −b̂i b̂
†
j .

More generally, we can define nested orderings, in which the outer ordering does not reorder
the inner one. For example,

{
: Ôb̂

†
j : b̂i

} = −b̂i b̂
†
j : Ô :, where Ô is some operator.

The different orderings of pairs are, in block matrix form,

: b̂µb̂†
ν : = − : b̂†

ν b̂µ : =
[
−b̂

†
j b̂i b̂i b̂j

b̂
†
i b̂

†
j b̂

†
i b̂j

]
,

{̂
bµb̂†

ν

} = −{̂b†
ν b̂µ

} =
[

b̂i b̂
†
j b̂i b̂j

b̂
†
i b̂

†
j −b̂j b̂

†
i

]
.

(4.3)

Note that this convention means that the relation between the two orderings is

: b̂ b̂
†

: = I + {̂b̂b
†}, (4.4)

where I is the constant matrix

I ≡
[−I 0

0 I

]
, (4.5)

in which 0 and I are the M × M zero and identity matrices, respectively.
When ordering products that contain a Gaussian operator �̂ (and later the density

operator), we do not change the ordering of �̂ itself; the other operators are merely reordered
around it. Thus,

{
:�̂b̂

†
i : b̂j

} = −b̂j b̂
†
i �̂. The different possible quadratic orderings
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containing a Gaussian operator can thus be written in matrix form as

: b̂ b̂
†
�̂ : =

[
−( b̂

†T
�̂b̂

T
)T �̂b̂̂b

T

b̂
†T

b̂
†
�̂ b̂

†T
�̂b̂

T

]
,

{̂b b̂
†
�̂} =

[
b̂�̂b̂

†
b̂̂b

T
�̂

�̂b̂
†T

b̂
† −( b̂�̂b̂

†
)T

]
,

{̂b : b̂
†
�̂ :} =

[
b̂̂b

†
�̂ b̂�̂b̂

T

−( b̂
†T

�̂b̂
†
)T −( �̂b̂̂b

†
)T

]
,

{: �̂b̂ : b̂
†} =

[
�̂b̂̂b

† −( b̂�̂b̂
T
)T

b̂
†T

�̂b̂
† −( b̂̂b

†
�̂)T

]
.

(4.6)

5. Normalized Gaussian operators

5.1. Definition

We define a normalized Gaussian operator �̂ to be the most general Gaussian form of fermionic
annihilation and creation operators, with zero displacement and unit trace. Using the extended-
vector notation, we first write the normally ordered Gaussian in an unnormalized form as

�̂(u)(µ, ξ, ξ+) = : exp[̂b
†
(I − σ−1/2)̂b] :, (5.1)

where we have introduced a new extended 2M × 2M covariance matrix σ defined in terms of
µ, ξ, ξ+ so that

σ−1 = 2I +

[
µ ξ

ξ+ −µT

]
. (5.2)

The introduction of the generalized covariance σ allows the Gaussian operator to be
written in a normalized form, using the results of appendix B, together with an explicit
complex amplitude factor �:

�̂(
−→
λ ) = �Pf[σA] : exp[̂b

†
(I − σ−1/2)̂b]:. (5.3)

The normalization is one obvious difference with the conventional complex-number or bosonic
Gaussian forms [9]. Chosen to ensure that Tr �̂ = �, it contains the Pfaffian of an
antisymmetric form σA of the covariance. The choice of antisymmetrization is given in
appendix B; other choices will lead, in general, to additional sign factors. The square of
the Pfaffian of an antisymmetric matrix is equal to its determinant and the determinant of
σA differs from that of σ by a constant sign (see appendix B). Thus, |Pf[σA]| = |

√
det[σ ]|,

and as we shall see, the relative phase between the two does not appear in later identities.
The additional variable � plays the role of a weighting factor in the expansion that allows
us to represent unnormalized density operators and to introduce stochastic gauges in the
drift [23, 24].

We have chosen to impose on the covariance a type of generalized Hermitian
antisymmetry, which can be written as σ = −σ +, with the definition that[

a b
c d

]+

≡
[

d c
b a

]T

. (5.4)
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It is this generalized antisymmetry that allows the covariance to be transformed into an
explicitly antisymmetric matrix. The covariance can also be broken down into the physically
significant M × M submatrices n, m and m+:

σ =
[−ñT m

m+ ñ

]
, (5.5)

Here, n and ñ ≡ 1 − n are complex matrices that correspond to the normal Green’s functions
for particles and holes, respectively, in many-body terminology, while m and m+ are two
independent antisymmetric complex matrices that correspond to anomalous Green’s functions,
as we will show in the next section. These quantities generalize the two-mode normal and
anomalous correlations that were calculated previously to the M-mode case.

Thus, the total parametrization of a general Gaussian operator is
−→
λ = (�, n, m, m+), (5.6)

consisting of 1 + p = 1 + M(2M − 1) parameters in all. However, for many systems,
only a subset of all Gaussian operators is required for a complete representation of the density
operator. One important subset is the set of generalized thermal states, for which m = m+ = 0.

In this case, from appendix B, and using the result that 2I−µT = ñ−1, we find the normalization
factor to be det[̃n]. The normalized thermal Gaussians therefore can be written as

�̂(
−→
λ ) = � det[̃n] : exp[−b̂†(2I − ñ−T )̂b]:. (5.7)

In order to use the Gaussian operator basis, we need to make use of a number of basic
results. The proof of many of these can be established, as we show in appendix B, with Fermi
coherent states and Grassmann algebra. The basics of these are given in appendix A. However,
the final results do not contain any Grassmann variables.

5.2. Trace properties

Some basic traces are

Tr[ �̂] = �, Tr[b�̂] = 0, Tr[: b̂ b̂
†
�̂ :] = �σ. (5.8)

The first of these is the normalization, proved as theorem 1 in appendix B. That the second is
zero follows from the fact that the Gaussians are constructed from pairs of ladder operators
and thus cannot correspond to a superposition of states whose total fermion numbers differ
by one. The same result holds for the trace with any odd product. The third trace, proved as
theorem 2 in appendix B, allows us to calculate first-order correlations. In terms of the M ×M

submatrices, these become

Tr
[
b̂
†
i b̂j �̂

] = �nij , Tr[ b̂i b̂j �̂] = �mij , Tr
[
b̂
†
i b̂

†
j �̂
] = �m+

ij . (5.9)

These results imply that for �̂ itself to correspond to a physical density matrix, n must be
a Hermitian matrix, since

〈
b̂
†
i b̂j

〉∗ = 〈 b̂†
j b̂i

〉
, and m+ must be the Hermitian conjugate matrix

of m, since 〈 b̂i b̂j 〉∗ = 〈 b̂†
j b̂

†
i

〉
. Physically, n gives the number, or normal correlations, and m

and m+ give the squeezing, or anomalous correlations.
Another restriction on �̂ being a physical density matrix that follows from equation (5.9)

is that the eigenvalues of the matrix n lie in the interval [0, 1], because of the Pauli exclusion
principle for fermions. Furthermore, the variance in the number correlations is

var
{〈

b̂
†
i b̂j

〉} = 〈 b̂†
i b̂j

〉(
1 − 〈 b̂†

i b̂j

〉)
, (5.10)

which implies that if all the eigenvalues of n are 0 or 1, then �̂ is a number state, as the
variance in number vanishes. If the eigenvalues are not limited to 0 or 1, then �̂ corresponds
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to a mixture of number states in the eigenbasis and is thus a (possibly squeezed) thermal
state, characterized by average occupation numbers nj = Eigj (n) (where Eigj (n) are the
eigenvalues of n) and a squeezing matrix m.

A general Gaussian operator will not necessarily fulfil the Hermiticity condition and thus
will not necessarily correspond to a physical state. However, the set of operators that do
correspond to physical states is an important subclass, because a Gaussian operator expansion
allows these states to be represented with a single element. The inclusion of nonphysical
operators in the expansion, on the other hand, makes the Gaussian basis an (over)complete
basis in which to expand a physical density operator of an arbitrary state. This is proved
below for the general case. The overcompleteness of the Gaussian operators as a basis set has
important implications for representing arbitrary states with a positive distribution function, a
fact that we discuss in detail elsewhere [15].

5.3. Completeness and positivity

We next wish to show that the previous results on completeness and positivity obtained for
one- and two-mode density matrix representations can be generalized to the multi-mode case.
That is, we will prove that

• For any physical density matrix ρ̂, a positive set of coefficients Pj exists such that

ρ̂ =
∑

j

Pj �̂(σ (j)). (5.11)

This central result does not rely on utilizing the complex amplitudes �, which are part of the
most general Gaussian operator. If these were used, then positivity of the coefficients would
be trivial, since these additional amplitudes could be used to absorb any phase or sign factors
arising in the expansion. Instead, we wish to prove a much stronger result, that a positive
expansion exists without any additional amplitude factors. This result is analogous to a similar
result known for the positive-P bosonic representation [7, 8].

From the number-state basis of equation (2.2), the full set of possible fermionic many-
body number states is the set {|�n〉} where �n is varied over all 2M possible permutations. This
defines a complete basis of 22M number-state projectors for the set of all fermionic density
operators. Even though not all the number-state projectors are Hermitian, we may nevertheless
use this larger set of operators as a basis for the density matrices ρ̂.

Next, we expand

ρ̂ =
∑

�n

∑
�m

|�n〉〈�n|ρ̂| �m〉〈 �m|

=
∑

�n

∑
�m

ρ�n �m|�n〉〈 �m|

=
∑

�n

∑
�m

ρ̂�n �m. (5.12)

The positive definiteness of the density operator means in particular that diagonal density
matrix elements are real and positive: ρ�n�n > 0. It is sufficient for completeness to prove that
any elementary fermionic operator of form ρ̂�n �m = ρ�n �m|�n〉〈 �m| corresponds to a normalized
Gaussian �̂(

−→
λ ), apart from a positive scaling factor. The demonstration proceeds by

constructing limiting cases of Gaussians that correspond to each of the elementary components
of the density matrix. As demonstrated in the one- and two-mode cases, such expansions are
not unique, and generally one can obtain other more compact representations by combining
diagonal and off-diagonal elements.
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To prove the elementary result, we proceed in three steps:

(1) Diagonal operators
First, the generic diagonal operator in the number basis is

ρ̂�n�n = ρ�n�n|�n〉〈�n|
= ρ�n�n

∏
i

|ni〉i〈ni |i , (5.13)

with a total occupation number

N =
∑

i

ni . (5.14)

Each diagonal multi-mode projector |�n〉〈�n| is simply an outer product of single-mode density
matrices. From the single-mode example in section 3.1, each single-mode density matrix
corresponds to a Gaussian as in equation (3.6). Thus, we see that a diagonal projector is
exactly equal to a normalized Gaussian (we suppress the trivial arguments for simplicity):

|�n〉〈�n| =
∏

i

�̂1[ni]

= �̂M [n], (5.15)

where the matrix n is defined as nij = niδij .
Because ρ�n�n are real and positive, equation (5.13) shows that a positive Gaussian expansion

exists for all diagonal density matrices:

ρ̂�n�n = ρ�n�n�̂M [n]. (5.16)

In summary, a diagonal multi-mode projector |�n〉〈�n| is simply an outer product of single-mode
density matrices, and hence corresponds exactly to a multi-mode normalized Gaussian.

(2) Generalized thermal operators
Next, consider off-diagonal projectors in the number-state expansion that conserve total
number, i.e.,

ρ̂�n �m = ρ�n �m|�n〉〈 �m|, (5.17)

for which ∑
i

ni = N =
∑

i

mi. (5.18)

We show that any such component can be written as the limiting form of a number-conserving
Gaussian, up to a positive scaling factor.

Let

n′
ij = δij min{ni,mi}, (5.19)

and define an off-diagonal Gaussian in terms of the diagonal normalized Gaussian:

�̂(o)(µ, n′) =:
∏
i �=j

[
1 − µij b̂

†
i b̂j

]
�̂[n′] : . (5.20)

Now for every distinct mode i with δni = ni − n′
i = 1, one can define a corresponding

distinct index j (i) with δmj = mj − m′
j = 1. It follows from the minimum condition,

equation (5.19), that j (i) �= i, and from the number-conservation equation, equation (5.18),
we have ∑

i

δni =
∑

i

δmi. (5.21)
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Similarly, for every distinct pairs of indices i, i ′ with δni = δni ′ = 1, it follows that
j (i ′) �= i, since otherwise δni = 0. The mapping therefore generates distinct pairs so
that j (i) �= j (i ′) ⇐⇒ i �= i ′. Next, we note that this mapping is not a permutation of the
set of modes i with δni = 0, since if it were the condition that j (i ′) �= i would be violated for
some i ′. Similarly, the mapping is not a permutation of any subset of these modes. This means
that the only non-vanishing terms in the normalization factor det[2I − µ] are the diagonal
terms, which are already normalized.

Proceed by defining the resulting set of δM � M pairs as  = {i, j}, and let

µij (ε, �n) =
∑

{i ′,j ′}∈

µδii ′δjj ′

−ε

where µδM = ρ�n �m, so that

�̂[µ(ε), n′] = :
∏
i �=j

[
1 − µij b̂

†
i b̂j

]
�̂[n′] :

= :
∏

{i,j}∈

[
1 +

µb̂
†
i b̂j

ε

]
|�n′〉〈�n′| : . (5.22)

Then consider the limit of ε → 0, so that to leading order,

ρ̂�n �m = µδM :
∏

{i,j}∈

[
b̂
†
i b̂j

]|�n′〉〈�n′| :

= lim
ε→0

εδM�̂[µ(ε), n′]. (5.23)

Again, we see that a positive expansion parameter is obtained.

(3) Squeezed operators
Finally, we consider the remaining elements of the density operator expansion, i.e., those

squeezed projectors ρ̂�n �m for which

N =
∑

i

ni =
∑

i

mi + 2S, (5.24)

where S is an integer denoting the change in the number of fermion pairs between �n and �m.
We suppose that S > 0, since the case of S < 0 is obtained trivially by Hermitian conjugation.
Let n∗

i be obtained from ni by removing 2S occupied sites, labelled as successive pairs i, j

belonging to a set ∗, so that N∗ = ∑
i n

∗
i = ∑

i mi . The occupation numbers n∗
i , mi now

define a generalized thermal density matrix component as previously, and hence equate to a
limiting case of a Gaussian operator from equation (5.23).

Now define a squeezed off-diagonal Gaussian in terms of the thermal case, which we have
already proved has a positive representation:

�̂(s)(µ(ε), ξ(ε), n′) =
∏
i>j

[
1 − ξij b̂

†
i b̂

†
j

]
�̂[µ(ε), n′], (5.25)

where

ξij (ε) =
∑

{i ′,j ′}∈∗

δii ′δjj ′

−ε
. (5.26)

Then consider the limit of ε → 0 as before, so that to leading order,

ρ̂�n �m = :
∏

{i,j}∈∗

[
â
†
i â

†
j

]|�n′〉〈 �m| :

= lim
ε→0

εS+δM�̂(s)[µ(ε), ξ(ε), n′]. (5.27)

A positive expansion parameter is obtained here as well, thus completing the proof.
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5.4. Differential properties

In order to use the Gaussian basis in a time-evolution problem, we need to be able to map
the evolution of the density operator onto an evolution of the expansion coefficients Pj . To
achieve this, one must be able to write the action of ladder operators on a Gaussian basis
element in differential form.

We can differentiate the Gaussian operators with respect to their parameters to get

d

d�
�̂ = 1

�
�̂,

d

dσ
�̂ = σ−1�̂ − σ−1 : b̂ b̂

†
�̂ : σ−1,

(5.28)

where the matrix derivative is defined as(
∂

∂σ

)
µ,ν

= ∂

∂σνµ

, (5.29)

i.e., involving a transpose. When taking these derivatives, the antisymmetry of the covariance
must be taken into account, as discussed in appendix B.

The expressions for the derivative can be inverted to obtain the important identities:

�̂ = �
∂

∂�
�̂, : b̂ b̂

†
�̂ : = σ�̂ − σ

∂�̂

∂σ
σ , (5.30)

and thus we can write the normally ordered action of any pair of operators on a Gaussian as a
first-order derivative. As theorems 5 and 6 in appendix B show, there are analogous identities
for antinormally ordered and mixed pairs:

{̂b : b̂
†
�̂ :} = −σ�̂ − σ̃

∂�̂

∂σ
σ , {̂b b̂

†
�̂} = −σ̃ �̂ − σ̃

∂�̂

∂σ
σ̃ , (5.31)

where σ̃ ≡ I − σ .
For the subset of Gaussian operators that correspond to (generalized) thermal states, i.e.,

m+ = m = 0, we obtain a simpler set of differential identities:

b̂
†T

b̂
T
�̂ = n�̂ + ñ

∂�̂

∂n
n, �̂b̂

†T
b̂

T = n�̂ + n
∂�̂

∂n
ñ,

b̂
†T

�̂b̂
T = ñ�̂ + ñ

∂�̂

∂n
ñ, ( b̂�̂b̂

†
)T = n�̂ − n

∂�̂

∂n
n.

(5.32)

The action of four ladder operators on a Gaussian operator can be obtained by applying the
previous identities twice. Thus, in a Gaussian expansion, any two-body interaction term can be
written as a second-order differential operator. As we show in detail elsewhere [15], this central
result allows the evolving density operator to be mapped to a Fokker–Planck equation for the
expansion coefficients, thus enabling a Monte Carlo sampling of the many-body quantum
state.

6. Conclusion

In summary, we have introduced a generalized Gaussian operator basis, as a means of defining
a non-orthogonal representation for correlated fermionic states. As special cases, the set
of Gaussian operators include the density operators for thermal states and squeezed states.
Thus the physics of the noninteracting Fermi gas and the BCS state is incorporated into
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the basis itself. Furthermore, the basis also includes more general operators, which ensure
an overcompleteness that makes it possible to express any physical density operator as a
probabilistic distribution over the Gaussian operators, without the need to use Grassmann
algebra.

We have calculated the normalization and correlations, and proved completeness and
positivity for the most general basis, and also for specific subsets, such as the number-
conserving thermal basis. These results mean that the phase-space representation defined by
the Gaussian operators can be used for first-principles simulations of many-body fermionic
systems. The mapping from the quantum operator to the probabilistic c-number description
is enabled by the Gaussian differential identities that have been derived here. The application
of these identities will be dealt with elsewhere [15], when we consider the phase-space
representation in more detail.
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Appendix A. Grassmann algebra

This appendix introduces the basic concepts of noncommuting algebra and lists some results
pertaining to Grassmann calculus and Fermi coherent states. These results are used in
appendix B to establish important properties of the Gaussian operators. Proofs and further
discussion of these results can be found in the literature [17–20].

Let α be a vector of M anticommuting (Grassmann) numbers, i.e.,

[αi, αj ]+ = 0. (A.1)

Since α2
j = 0, any function of Grassmann numbers can be at most linear in any one of its

arguments. Thus, for example, the single-mode exponential is

exp(αj ) = 1 + αj , (A.2)

and a multi-mode exponential, e.g., exp
(∑

αj

)
will be an ordered product of such single-mode

exponentials.
The Grassmann numbers anticommute with all Fermi annihilation and creation operators,

but commute with c-numbers and bosonic operators.

A.1. Grassmann calculus

Differentiation of a single Grassmann variable is defined as

∂

∂αi

αj = δij , (A.3)

with the derivative of products obtained by the Grassmann chain rule:

∂

∂αj

[f (α)g(α)] =


∂f

∂αj

g + f
∂g

∂αj

, f even

∂f

∂αj

g − f
∂g

∂αj

, f odd,

(A.4)

i.e., the derivative operator also anticommutes.
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Grassmann integration is defined to be the same as differentiation, but written in a different
way: ∫

dαj = 0,

∫
αj dαj = 1. (A.5)

Multivariate integrals are ordered sequences of single-variable integrations, which can be
written without ambiguity if the integration measure (as for a derivative) is also taken to be an
anticommuting number. For an integral over all variables in a vector, we define the integration
measure to be ordered in increasing numerical order: dα ≡ dα1 · · · dαN .

Note that integrating a total derivative gives zero:∫
dαj

∂

∂αj

f = 0. (A.6)

This fact, coupled with the product rule, gives a result for partial integration:

∫
dαj

∂f

∂αj

g =


−
∫

dαj f
∂g

∂αj

, f even∫
dαj f

∂g

∂αj

, f odd.

(A.7)

One very useful result is the multivariate Gaussian integral:∫
exp(−αT Aα/2) dα = Pf[A] (A.8)

for an antisymmetric matrix A of complex numbers. The Pfaffian is related to the determinant
(Pf[A])2 = det[A], and thus, apart from a sign change, has many of the same properties. For
example, Pf[AT ] = (−1)N Pf[A] and |Pf[A−1]| = |1/Pf[A]|. Another useful type of Gaussian
integral is ∫

exp(−βT Bα)

M∏
j=1

(dβj dαj ) = det[B], (A.9)

where B is a square matrix of complex numbers and β and α are the two independent
Grassmann vectors. This second integral is in fact a special case of the first, except with 2M

total Grassmann variables.

A.2. Grassmann coherent states

For each Grassmann number αj we can associate another Grassmann number, denoted as αj ,
to play the role of a complex conjugate. This is formally regarded as an independent variable
for calculus purposes. The conjugates αj anticommute with all other Grassmann variables.
By use of such a complex Grassmann algebra, we can define a fermionic coherent state, which
is formally an eigenstate of the annihilation operator:

|αj 〉 = (1 + αjαj )
− 1

2 (|0〉 + |1〉αj )

= exp
(
b̂
†
jαj − 1

2αjαj

)|0〉, (A.10)

〈αj | = (1 + αjαj )
− 1

2 (〈0| + αj 〈1|)
= exp

(
αj b̂j − 1

2αjαj

)〈0|. (A.11)
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With these definitions, one can see that, like the bosonic coherent state, b̂j |αj 〉 = αj |αj 〉
and 〈αj |̂b†

j = 〈αj |α∗
j the fermionic coherent state can also be written as a (Grassmann)

displacement from the vacuum:

|αj 〉 = exp
(
b̂
†
jαj − αj b̂j

)|0〉. (A.12)

Multi-mode coherent states are products of the single-mode states:

|α〉 =
M∏

j=1

|αj 〉

= exp

 M∑
j=1

b̂
†
jαj − αj b̂j

 |0〉.

The inner product of two states is

〈αi |αj 〉 = exp(αiαj − αiαi/2 − αjαj/2), (A.13)

and thus has two special cases:

〈αi |αi〉 = 1, 〈−αi |.αi〉 = exp(−2αiαi). (A.14)

The usefulness of the coherent states lies in the fact that they form a complete set:∫
dαj dαj |αj 〉〈αj | = |0〉〈0| + |1〉j 〈1| = I1, (A.15)

or, for the multi-mode case,∫
dα|α〉〈α| = IM, (A.16)

where we have defined a 2M-variate integration measure as

dα ≡
M∏

j=1

(dαj dαj ). (A.17)

For later convenience, we define the alternative integration measure

dα ≡
M∏

j=1

(dαj dαj ) = (−1)(M−1)M/2 dα. (A.18)

Finally, we can express the trace of an arbitrary operator Ô as

Tr[ Ô] =
∫

dα〈−α|Ô|α〉. (A.19)

Appendix B. Gaussian fermion operators

We prove some useful results concerning the most general multi-mode Gaussian operator
constructed from fermionic ladder operators. The proofs make use of the properties of
Grassmann coherent states and anticommuting algebra, which are summarized in appendix A.
However, the final results do not contain any Grassmann variables. The results establish the
trace and differential properties of the Gaussian operators that are discussed in section 5.
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B.1. General Gaussian operator

In this appendix, we use the vector and ordering notations introduced in section 4. We find it
convenient to use an unnormalized Gaussian form of Fermi operators:

�̂(u)(µ) = : exp[−b̂
†
µ̂b/2] :,

≡
∞∑

n=0

1

2nn!
: (−b̂

†
µ̂b)n :

= :
2M∏

µ,ν=1

(
1 − 1

2
b̂†

µµµνb̂ν

)
:, (B.1)

where µ is a 2M × 2M matrix of parameters, given by

µ =
[

µ ξ

ξ+ −µT

]
.

In terms of the covariance matrix σ , the unnormalized Gaussian is

�̂(u)(σ ) = : exp[̂b
†
(I − σ−1/2)̂b] :, (B.2)

where the relation between the two parametrizations is σ = [µ+2I ]−1 and where the diagonal

matrix I is as defined in equation (4.5).
Because of the anticommuting property of fermions, we can impose upon σ and µ a

generalized antisymmetry: σ = −σ +, µ = −µ+, or in block matrix form,[
a b
c d

]
≡ −X

[
a b
c d

]T

X

= −
[

dT bT

cT aT

]
, (B.3)

where the constant matrix X is defined as

X ≡
[

0 I
I 0

]
. (B.4)

When applied to the left of a matrix, X swaps the upper and lower halves; when applied to
the right, it swaps the left and right halves. This structure means that the matrices σ and
µ can be transformed into explicitly antisymmetric forms by certain permutations of rows

and columns. For example, it follows immediately from equation (B.3) that interchanging
left and right halves, or upper and lower halves, will generate an antisymmetric matrix.
Alternatively, inserting each row in the lower half after the corresponding row in the upper
half, and inserting each column in the right half before the corresponding row in the left half,
generates the antisymmetric form

[
a b
c d

]
A

≡


b11 a11 · · · b1M a1M

d11 c11 · · · d1M c1M

...
...

. . .
...

...

bM1 aM1 · · · bMM aMM

dM1 cM1 · · · dMM cMM

 . (B.5)

With the covariance matrix antisymmetrized in this way, the Gaussian operator becomes

�̂(u)(σ
A
) = : exp

[
b̂

T

A

(
I

A
− σ−1

A
/2
)̂
bA

]
:, (B.6)
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where the vector of operators is now

b̂A =



b̂1

b̂
†
1
...

b̂M

b̂
†
M

 . (B.7)

The generalized antisymmetry of σ and µ has implications for matrix derivatives. Because

each element of the matrix appears twice, we have ∂σµν/∂σθφ = δµθδνφ −XµφXνθ , where δµν

is the Kronecker delta function. The extra terms here appear in the derivative of an inverse:

∂σ−1
µν

∂σθφ

= −σ−1
µθ σ−1

φν + σ−1
µγ XγφXθεσ

−1
εν . (B.8)

They also give an additional factor of 2 in the derivative of a determinant, thus
d

dσ

√
det σ =

√
det σ σ−1, (B.9)

where we define the matrix derivative as(
d

dσ

)
µν

= d

dσνµ

, (B.10)

i.e., involving a transpose. The result (B.8) allows us to relate the derivatives with respect to
σ and µ :

df

dµ
= df

dσ−1
= −σ

df

dσ
σ . (B.11)

B.2. Normalization

Theorem 1. The trace of the unnormalized Gaussian operator is equal to the Pfaffian of the
inverse of the antisymmetrized covariance, i.e.,

N ≡ Tr[ �̂(u)(σ )] = Pf
[
σ−1

A

]
, (B.12)

where Pf stands for Pfaffian.

Proof. Because the Gaussian is in normally ordered form, it is straightforward to evaluate
the trace with multi-mode Grassmann coherent states |α〉, using the Grassmann trace result of
equation (A.19):

Tr[ �̂(u)] =
∫

〈−α|�̂(u)|α〉 dα

=
∫

exp[−α†σ−1α/2] dα, (B.13)

where we have made use of the fact that, from the Grassmann inner product result of
equation (A.13), 〈−α|α〉 = exp(−2αα). We have also changed variables: αj → −αj ,
swapped the order of pairs in the integration measure and introduced 2M vectors of Grassmann
variables α = (α, (α)T ) and α† = (α, αT ). Changing to the antisymmetric form of the
covariance σ

A
we obtain

Tr[ �̂(u)] =
∫

exp
[− αT

Aσ−1
A

αA/2
]

dα, (B.14)
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where the reordered Grassmann vector is αA = (α1, α1, . . . , αM, αM)T . Noting that the
arrangement of elements in αA matches the order of integration, we can apply the Gaussian
integral result [equation A.8)]:

Tr[ �̂(u)] = Pf
[
σ−1

A

]
. (B.15)

�

Corollaries. Now the square of the Pfaffian of a matrix is equal to its determinant. Thus, to
within a ± sign, the normalization is determined by the determinant of the covariance:

(Tr[ �̂(u)])2 = 1

det[σ
A

]
= (−1)M

det[σ ]
= 1

det[iσ ]
, (B.16)

and thus we may write the Gaussian operator in normalized form as

�̂ = ±�
√

det[iσ ] : exp[̂b
†
(I − σ−1/2)̂b] :, (B.17)

where the choice of ± sign is determined by
√

det[σ
A

]Pf
[
σ−1

A

]
.

This extra sign, or phase, which does not appear in the normalizations of the familiar
complex-number or bosonic Gaussians, fortunately does not appear in any of the identities
needed to make use of the Gaussian operators as a basis for a phase-space representation.

A specific case where the determinant appears is for the generalized thermal Gaussian
without squeezing parameters, so that m = m+ = 0. In this case, the normalization follows
directly from the second Grassmann Gaussian integral identity, equation (A.9). Following the
same procedure as before, we find that

Tr[ �̂(u)] = det[2I − µ]. (B.18)

B.3. First-order correlations

Theorem 2. The fermionic Gaussian operator is completely characterized by its first-order
correlations. In particular, the covariance matrix corresponds to the first-order correlations
in normally ordered trace form, i.e.,

Tr[: b̂ b̂
†
�̂ :] = �σ, (B.19)

where b̂ b̂
†

is a matrix multiplication of two vectors, resulting in the 2M × 2M matrix of
equation (4.2).

Proof. We proceed as in the proof of theorem 1, by taking the trace of the unnormalized form
using Grassmann coherent states and then changing variables, αj → −αj ,

Tr[: b̂ b̂
†
�̂(u) :] =

∫
〈−α| : b̂ b̂

†
�̂(u) : |α〉 dα

=
∫

αα† exp[−α†σ−1α/2] dα. (B.20)

Next, we put the integral into the form (A.8):

Tr[: b̂ b̂
†
�̂(u) :] =

∫
−(α†T αT )T exp[−α†σ−1α/2] dα

= d

dσ−1

∫
exp[−α†σ−1α/2] dα, (B.21)
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where in taking the derivative with respect to σ−1 we have taken account of the fact that each
element of it appears twice, owing to its generalized antisymmetry. Evaluating the Grassmann
integral and employing the determinant result, we get

Tr[: b̂ b̂
†
�̂(u) :] = d

dσ−1
(±)
√

det[iσ−1]

= ±
√

det[iσ−1]σ . (B.22)

Finally, dividing through by the normalization in equation (B.12) gives the normalized result.
�

Corollaries. We can put equation (B.19) into a more familiar form by using the cyclic property
of trace:

Tr[: b̂ b̂
†
�̂ :] = Tr

([−( b̂†T �̂b̂T )T �̂b̂̂bT

b̂†T b̂† �̂ b̂†T �̂b̂T

])

= Tr

([−b̂̂b† b̂̂bT

b̂†T b̂† ( b̂̂b†)T

]
�̂

)
= �

[−ñT m
m+ ñ

]
. (B.23)

We have defined the matrices n and ñ ≡ I − n for the normal correlations of particles and
holes, respectively, and the matrices m and m+ for the squeezing, or anomalous, correlations,
as follows:

n = 〈 b̂†T b̂T 〉�̂, m = 〈 b̂̂bT 〉�̂, m+ = 〈 b̂†T b̂†〉�̂, (B.24)

where 〈 Ô〉�̂ ≡ Tr[ Ô�̂]�. Thus, we can write the covariance matrix in terms of the
correlations as

σ =
[−ñT m

m+ ñ

]
, (B.25)

or inverting the relationship

〈: b̂ b̂
†

:〉�̂ = I σ̃ I , (B.26)

where σ̃ = I − σ .

B.4. Higher order correlations

One can calculate higher order correlations along similar lines, i.e., by expanding the trace in
fermionic coherent states and using standard results for Gaussian integrals. The result is a sum
over permutations of products of first-order correlations, with appropriate signs for fermion
antisymmetry.

Theorem 3. An rth-order correlation of a Gaussian operator, in normally ordered trace form,
factorizes into sums of first-order correlations as follows:

Tr
[

: b̂µ1 · · · b̂µ2r�̂ :
] = �1−r

∑
P

(−1)P Tr
[

: b̂ν1 b̂ν2�̂ :
]× · · · × Tr

[
: b̂ν2r−1 b̂ν2r

�̂ :
]
,

(B.27)

where νj = µP(j). The sum is over all 2r!/(2r r!) distinct pair permutations P(1), . . . , P (2r)

and the sign (−1)P is the parity of the permutation.
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Proof. We start by expressing the trace in terms of fermionic coherent states:

Tr
[

: b̂µ1 · · · b̂µ2r
�̂ :

] =
∫

〈−α| : b̂µ1 · · · b̂µ2r
�̂ : |α〉 dα

= �

N

∫
αµ1 · · · αµ2r

exp(−α†σ−1α/2) dα

= �

N

∫
αA(µ1) · · · αA(µ2r ) exp

(−αT
Aσ−1

A
αA/2

)
dα, (B.28)

where A(µ) is the permutation required to convert α to αA. The integral is now in standard
form and we can thus apply the appropriate result from [19] to give

Tr
[

: b̂µ1 · · · b̂µ2r
�̂ :

] = �1−r
∑
P

(−1)P {σ
A
}A(ν1),A(ν2) × · · · × {σ

A
}A(ν2r−1),A(ν2r )

= �1−r
∑
P

(−1)P σν1ν
′
2
· · · σν2r−1,ν

′
2r
, (B.29)

where νj = µP(j) and where ν ′
j = (νj + M) mod 2M . Finally, substituting in the result for

first-order correlations on the right-hand side gives equation (B.27). �

Examples. A general second-order correlation is of the form (for � = 1)

Tr
[

: b̂µ1 b̂µ2 b̂µ3 b̂µ4�̂ :
] = σµ1µ

′
2
σµ3µ

′
4

+ σµ1µ
′
4
σµ2µ

′
3

+ σµ1µ
′
3
σµ4µ

′
2
. (B.30)

Thus, for example, the normally ordered number–number correlations are

Tr[: n̂i n̂j : �̂] = niinjj − nijnji − mijm
+
ij , (B.31)

i.e., containing the three terms expected for a state with Gaussian correlations.
Similarly, a third-order correlation is of the form (for � = 1)

Tr
[

: b̂µ1 . . . b̂µ6�̂ :
] =

∑
P

(−1)P σν1ν
′
2
σν3ν

′
4
σν5ν

′
6
, (B.32)

where νj = µP(j). Thus, the normally ordered triple correlations are

Tr[: n̂i n̂j n̂k : �̂] = niinjjnkk − nii

(
njknkj + mjkm

+
jk

)
+ nijnjknki − njj

(
niknki + mikm

+
ik

)
+ njinkjnik − nkk

(
nijnji + mijm

+
ij

)
+ nijmikm

+
jk + njimjkm

+
ik

+ njkmjim
+
ki + nkjmkim

+
ji + nkimkjm

+
ij + nikmkjm

+
ij , (B.33)

again as expected for a state with Gaussian correlations.

B.5. Normally ordered products

Theorem 4. A normally ordered product of a pair of ladder operators and a Gaussian is
equivalent to a first-order differential operator on the Gaussian, as follows:

: b̂ b̂
†
�̂ : = σ�̂ − σ

∂�̂

∂σ
σ . (B.34)

Proof. The proof can be established easily without Grassmann algebra. We first take the
derivative of the unnormalized Gaussian operator:

∂

∂µµν

�̂(u)(µ) = − : b̂†
µ�̂(u)(µ)̂bν : . (B.35)
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We write this as a derivative with respect to the covariance matrix, using equation (B.11), and
swap the pair of operators, to give

σ
d�̂(u)(σ )

dσ
σ = − : b̂ b̂

†
�̂(u)(σ ) : . (B.36)

Next, we take the derivative of the normalization, using equation (B.9),

d

dσ
N = d

dσ
(±)(det[iσ ])−

1
2

= −Nσ−1. (B.37)

Combining both of these results, we find that the derivative of the normalized Gaussian is

d

dσ
�̂ = −�N−2�̂(u) dN

dσ
+ �N−1 d

dσ
�̂(u)

= σ−1�̂ − σ−1 : b̂ b̂
†
�̂ : σ−1, (B.38)

whose inverse is the required result. �

This result can also be proved by use of Grassmann coherent-state expansions, in similar
manner to the proofs below for the products of different ordering.

B.6. Mixed products

Theorem 5. A product of mixed order of a pair of ladder operators and a Gaussian is
equivalent to a first-order differential operator on the Gaussian, as follows:

{̂b : b̂
†
�̂ :} = −σ�̂ − σ̃

∂�̂

∂σ
σ . (B.39)

Proof. We first make use of the Fermi coherent-state completeness identity to replace all
ladder operators by Grassmann integrals over coherent projection operators:

{̂b : b̂
†
�̂ :} =

∫
dγ dβ dα dε|γ〉〈γ|{̂b : |β〉〈β|̂b†

�̂|α〉〈α| :}|ε〉〈ε|

= �

N

∫
dγ dβ dα dε|γ〉〈ε| exp

[
−1

2
(β, α)µ̃

(
α

β

)]
×
(

β

α

)
(β, α) exp

[
γβ + αε − αα − ββ − 1

2
γγ − 1

2
εε

]
, (B.40)

where µ̃ ≡ µ + I . We have used the result that the inner product of two coherent states is,

from equation (A.13),

〈β|α〉 = exp[βα − ββ/2 − αα/2]. (B.41)

Next, we employ integration by parts (equation (A.7)) to replace
(
β
α

)
by variables that appear

in the Gaussian form:

exp

[
−(β, α)µ̃

(
α

β

)/
2

] [(
β

α

)
exp(−αα − ββ)

]
(β, α)

= exp

[
−(β, α)µ̃

(
α

β

)/
2

] [(−∂β

∂α

)
exp(−αα − ββ)

]
(β, α)
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→ exp(−αα − ββ)

(
∂β

−∂α

)
exp

[
−1

2
(β, α)µ̃

(
α

β

)]
(β, α)

= exp(−αα − ββ)

[
I µ̃

(
α

β

)
(β, α) − I

]
× exp

[
−(β, α)µ̃

(
α

β

)/
2

]
. (B.42)

We can now express the result as a derivative of the unnormalized Gaussian operator with
respect to µ :

{̂b : b̂
†
�̂ :} = �

N

∫
dγ dβ dα dε|γ〉〈ε| exp

[
−αα − ββ − 1

2
γγ − 1

2
εε + γβ + αε

]
×
[
I µ̃

d

dµ
− I

]
exp

[
−1

2
(β, α)µ̃

(
α

β

)]

= �

N

[
I µ̃

d

dµ
− I

]
�̂(u). (B.43)

Finally, we can change variables to σ = [µ̃ + I ]−1 and use the result for the derivative of the

normalization:

{̂b : b̂
†
�̂ :} = �

N

[
−I (σ−1 − I )σ

d�̂(u)

dσ
σ − I�̂(u)

]

= −σ̃

(
d�̂

dσ
+

�̂

N

dN

dσ

)
σ − I�̂

= −σ̃

(
d�̂

dσ
− �̂σ−1

)
σ − I�̂

= −σ − σ̃
d�̂

dσ
σ . (B.44)

�

B.7. Antinormal products

Theorem 6. An antinormally ordered product of a pair of ladder operators and a Gaussian
is equivalent to a first-order differential operator on the Gaussian, as follows:

{̂b b̂
†
�̂} = −σ̃ �̂ − σ̃

∂�̂

∂σ
σ̃ . (B.45)

Proof. The proof initially proceeds in the same manner as for products of mixed ordering.
We first insert the coherent-state identity to convert the action of the operators into integrals
over coherent-state projectors:

{̂b b̂
†
�̂} =

∫
dγ dβ dα dε|γ〉〈γ|{̂b̂b

†|β〉〈β|�̂|α〉〈α|}|ε〉〈ε|

= �

N

∫
dγ dβ dα dε|γ〉〈ε| exp

[
−1

2
(β, α)µ̃

(
α

β

)]
×
(

β

α

)
(α, β) exp

[
γβ + αε − αα − ββ − 1

2
γγ − 1

2
εε

]
. (B.46)
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This time, however, we integrate by parts twice:

exp

[
−(β, α)µ̃

(
α

β

)/
2

](
β

α

)
(α, β) exp(−αα − ββ)

= exp

[
−(β, α)µ̃

(
α

β

)/
2

](−∂β

∂α

)
(∂α,−∂β) exp(−αα − ββ)

→ exp(−αα − ββ)

(−∂β

∂α

)
(∂α,−∂β) exp

[
−1

2
(β, α)µ̃

(
α

β

)]
= exp(−αα − ββ)

[
−I + I µ̃

(
α

β

)
(β, α)

]
µ̃I

× exp

[
−1

2
(β, α)µ̃

(
α

β

)]
, (B.47)

which is now in a form that we can again express as a derivative of the unnormalized Gaussian
operator with respect to µ:

{̂b b̂
†
�̂} = −�

N

∫
dγ dβ dα dε|γ〉〈ε| exp

[
−αα − 1

2
ββ − γγ − 1

2
εε + γβ + αε

]
×
([

I − I µ̃
d

dµ

]
exp

[
−1

2
(β, α)µ̃

(
α

β

)])
µ̃I

= �

N

[
−I�̂(u) + I µ̃

d�̂(u)

dµ

]
µ̃I .

Finally, we change variables to σ = [µ̃ + I ]−1 and use the result for the derivative of the

normalization:

{̂b̂b
†
�̂ :} = −�

N

[
I�̂(u) + σ̃

d�̂(u)

dσ
σ

]
σ−1σ̃

= −σ̃ �̂ − σ̃
d�̂

dσ
σ̃ . (B.48)

�
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